

R. van Holsteijn

Managing Director VHK BV

Project leader MONICAIR

Berlin, 14./15. April 2016

IAQ Performance Ventilation Systems, slide 1

Rob van Holsteijn, VHK

Unter der Schirmherrschaft des

MONICAIR is a pre-competitive field research project into the real-life IAQ- and Energy Performance of ventilation systems in Dutch residential dwellings.

Final goal: Further improvement of residential ventilation systems, building codes and energy assessment methods

MONICAIR Consortium:

MONICAIR Project Funding

Total project costs

: 1,57 million euro

- Contribution Dutch Ministry of Economic Affairs* : 0,86 million euro
- Contribution Consortium Members
- **Contribution Housing Corporations**

- : 0,63 million euro
- : 0,08 million euro

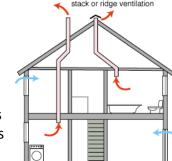
* Within the framework of TKI (Top Consortia for Knowledge & Innovation)

MONICAIR Project Rationale

Energy-performance of ventilation systems is *estimated* (based on EPBD-calculation methods)

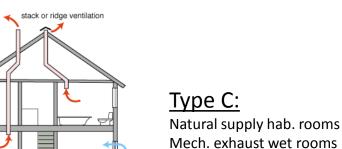
IAQ- performance is *assumed*, and estimated equally for all code compliant ventilation systems

MONICAIR collects **real-life data** on the IAQ- & Energy Performance of code compliant ventilation systems, in order to gain knowledge and improve systems & assessment methods


Details of the Monitoring Project

- 62 terraced / semi detached houses
- 10 ventilation systems, tuned to building codes
- Approximately 6 identical dwellings per ventilation system
- Monitoring of CO₂, RH, Temperature and Presence in <u>all rooms</u>
- Monitoring of power consumption of all mech. ventilation units
- Sampling frequency: 5 minutes
- Meteorological data imported from nearest weather stations
- Period: two heating seasons, one summer season

Resulting in a MONICAIR database of over 100 million data-points



Monitored ventilation systems /1

Type A: Natural supply in all rooms Natural exhaust wet rooms


System type		Section of house that is served	Air exchange provisions			Controls	
			Exhaust	Supply	Heat Rec.	Exhaust	Supply
	A.	Whole house	Nat. extraction in wet-rooms	Stnrd nat.supply vents in all rooms	No	No Control	Manual
Type C Systems	C.1	Whole house	Mech. extraction in wet-rooms	Stnrd nat.supply vents in hab.rooms	No	Manual 3-pos. switch	Manual
	C.2c	Whole house	Mech. extraction in wet-rooms	Wind contrl. nat. supply in hab.rooms	No	Manual 3-pos. switch	Manua
	C.4a	Whole house	Mech. extraction in wet-rooms	Wind contrl. nat. supply in hab.rooms	No	CO ₂ -sensor in living room	Manual
	C.4c	Whole house	Mech. extraction in all rooms	Wind contrl. nat. supply in hab.rooms	No	CO ₂ / RH cntrl in all hab.rooms	Manua

Extract System

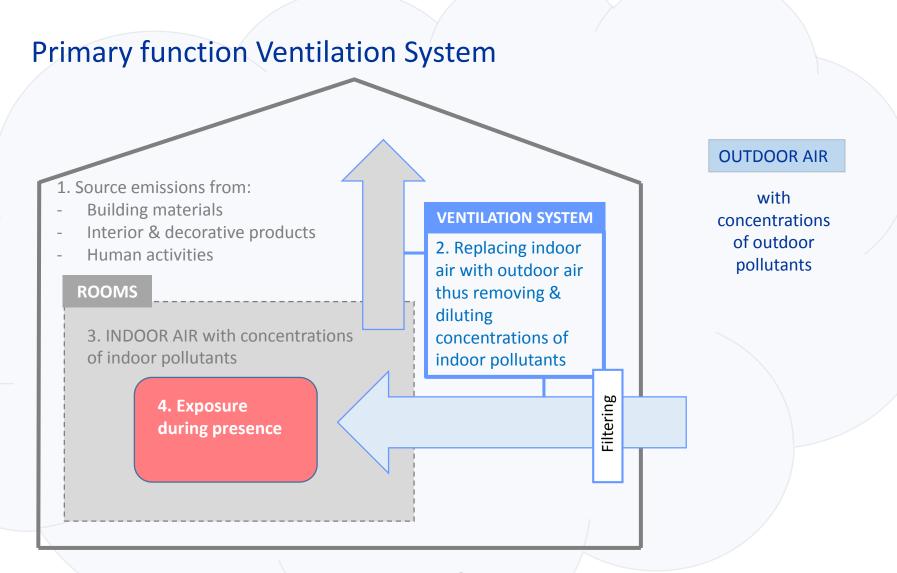
Monitored ventilation systems /2

<u>Type [</u>):
Mechani	ral cu

Mechanical supply Mechanical exhaust Heat Recovery

System type		Section of house that is served	Air exchange provisions			Controls	
			Exhaust	Supply	Heat Rec.	Exhaust	Supply
Type D Systems	D.2	Whole house	Mech. extraction in wet-rooms	Mech. supply in hab.rooms	Yes	Manual 3-pos. switch	
	D.5a	Whole house	Mech. extraction in wet-rooms	Mech. supply in hab.rooms	Yes	Manual 3-pos. switch with CO ₂ -contrl in 2 zones	
	D.5b	Whole house	Mech. extraction in all rooms	Mech. supply in hab.rooms	Yes	CO ₂ and RH -controlled ventilation in all rooms	
	D.x	Whole house	Mech. extraction in all rooms	Mech. supply in con.spaces	Yes	CO ₂ - & RH control in all hab.rooms	

Monitored ventilation systems /3

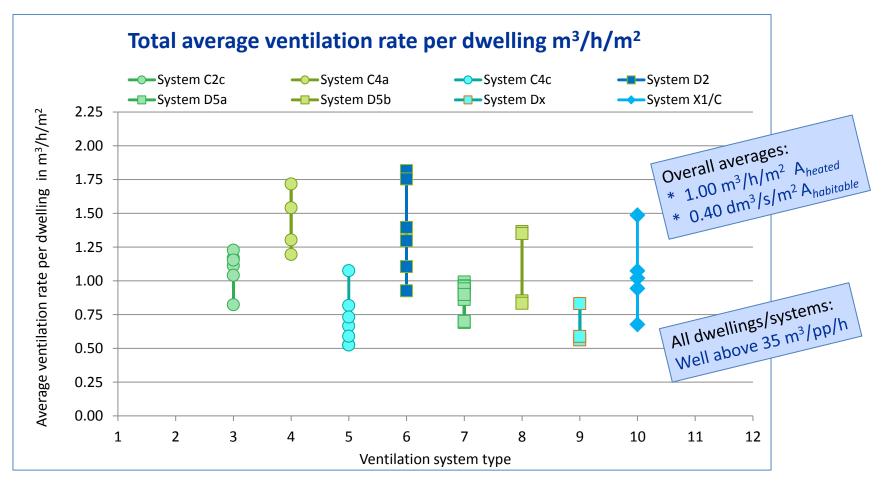

Type X1/C and X1/A

A combination of systems:

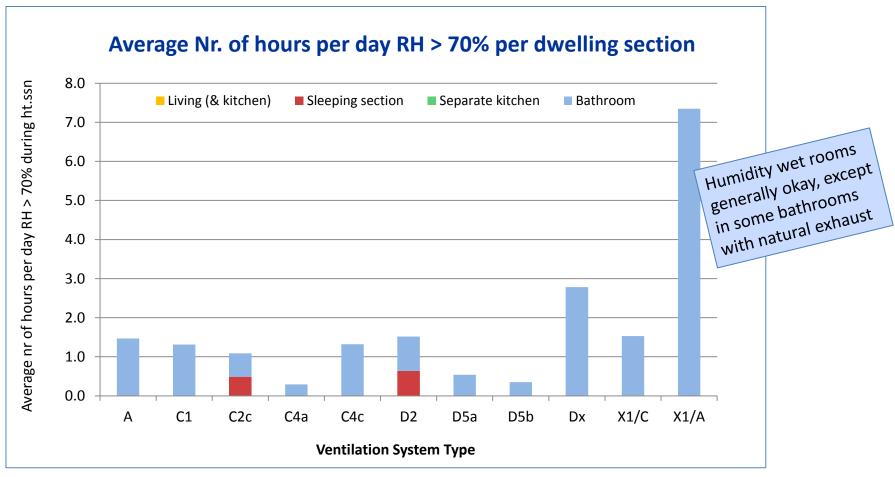
Living section : Mechanical supply & exhaust per room with HR Sleeping section : System C or system A

System type		Section of house that is served	Air exchange provisions			Controls	
			Exhaust	Supply	Heat Rec.	Exhaust	Supply
Comb. of systems	X1/C	Living section: D	Mech. extraction in hab.rooms	Mech. supply in hab.rooms	Yes	CO ₂ and RH -controlled ventilation in living room	
		Sleeping section:C.2c	Mech. extraction in wet-rooms	Wind contrl. nat. supply in bedrooms	No	Manual 2-pos. switch	Manual
	X1/A	Living section: D	Mech. extraction in hab.rooms	Mech. supply in hab.rooms	Yes	CO ₂ and RH -controlled ventilation in living room	
		Sleeping section: A	Nat. extraction in wet-rooms	Wind contrl. nat. supply in bedrooms	No	No control	Manual

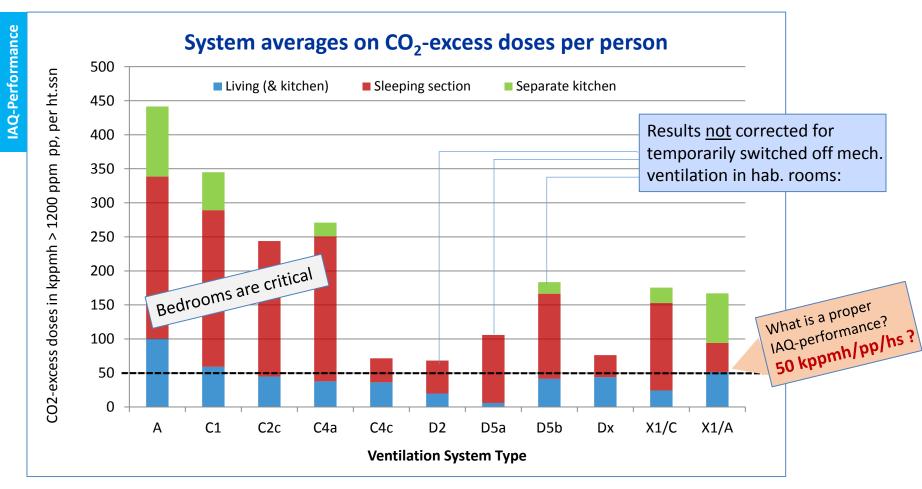
Primary function Ventilation System:

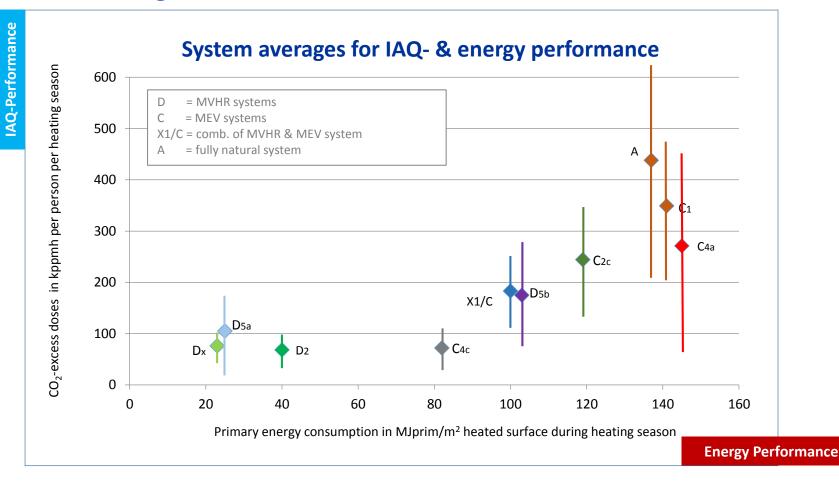

"To <u>exchange</u> polluted indoor <u>air</u> by cleaner outdoor air <u>in all rooms of a dwelling</u>, thus diluting the concentrations of all possible indoor contaminants".

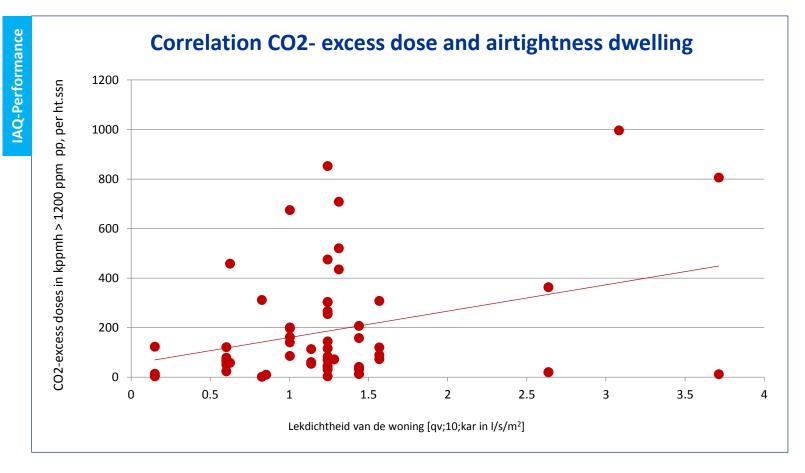
The **IAQ-performance** of ventilation systems is based on their ability to – under all kinds of real life circumstances – *achieve the requested air exchange rates in each individual room*.


For habitable rooms: CO_2 -concentration (< 1200 ppm = 7 l/s per person *equals* 25 m3/h pp) The CO_2 -concentration is generally accepted as indicator, not only for hygienic thresholds, but also for the actually occurring air-exchange-rates in a room during presence.

For wet rooms: RH (preferably between 30 -70%) Since dwell time in wet rooms is limited, RH is used as indicator for the IAQ-performance in wet rooms.







Summary monitoring results /1

- 1. At dwelling level, all ventilation systems achieve av. flowrates of > 35 m3/h/pp
- 2. Humidity levels in all rooms well below 70% RH during > 22 hours per day
- 3. Ventilation systems show large differences in their ability to achieve requested air-exchange rates of 25 m3/h/pp in habitable rooms during presence.
- As a results there are large differences in CO₂-excess doses, varying from 0 –
 853 kppmh/pp/heating season; bedrooms are critical.
- 5. Systems that use a mechanical component in the air-exchange provisions in habitable rooms have a significantly better IAQ-performance.
- 6. Inhabitants do not react on high CO_2 -levels (> 3000 ppm CO2).

Summary monitoring results/2

- Leaks in dwellings façade or roof do not necessarily improve the IAQ in habitable rooms
- 8. For dwellings with only natural air- supply and extract provisions in habitable rooms, an increase in flow rate does not improve the IAQ
- 9. Noise and draught are reasons to temporarily switch off mech. vent. units.
- 10. There are significant differences in real-life energy performance and the EPBD assessment methods

Main Conclusions

- Current Building codes do not suffice to guarantee good IAQ in habitable rooms
- Code-compliant ventilation systems show large differences in their IAQperformance in habitable rooms
- EPBD-assessment methods on energy-performance result in another ranking of ventilation systems compared to <u>real-life</u> energy performance
- Ranking ventilation systems on energy-performance only, <u>without</u> assessing their IAQ-performance, makes no sense

Buildings codes and assessment methods need further improvement

Reviewing Existing Legal Framework

- There are no requirements related to the actual IAQ-performance (only requirements related to flow-rate capacity of air-exchange provisions).
- Existing legal framework is partly based on the assumption that people are capable of assessing the IAQ-levels in their rooms and act upon it by operating the ventilation provisions; this is a questionable assumption.
- There is <u>no</u> proper test-procedure for determining the performance of ventilation systems on their primary IAQ-function (only test standards on individual components)
- There is no officially accepted definition of the minimal IAQ-performance, nor of any ranking in IAQ-performances.

Recommendations

The IAQ-performance of MEV and MVHR-systems can be further improved. Key requisites for achieving these improvements are:

- Development of a validated and internationally accepted IAQ test-protocol for ventilation <u>systems</u> (testing their ability to achieve the requested air-exchange rates under normally occurring circumstances in all rooms)
- Define minimum IAQ-requirements, to be embedded in buildings regulations.
- Development and introduction of a labelling system, indicating the IAQ-performance of ventilation systems
- Further improvement of the energy-performance assessment methods (validation with real-life monitoring data).
- Energy-performance can only be communicated when linked to the IAQ-performance

Spin-off

- Dutch standardization body NEN recently started a project to revise NEN1087, the standard that described the methods for determining the performance of ventilation systems in new buildings in the Netherlands.
- Findings of the MONICAIR-project are incorporated in the R&D strategies of the Dutch manufacturing ventilation industry.

Questions

Are there any monitoring project similar to MONICAIR being performed in Germany?

Are the findings of the MONICAIR-project also applicable to Germany (and other EU-member-states)?

Thank you for your attention Woonkeuken 10C008

140

120 100

25

70

18:00

19:00

Afzuigkap debiet [m³/h]

20:00

22:00

23:00

60

50

40

30

20

10

0

Ruur P°C

Full report (in Dutch & English) can be downloaded from: www.monicair.nl

00:00 00:50 00:90

tiviteit

00:00

02 [ppm]

00:60

10:00

11:00

12:00

Temperatuur [°C]

14:00

15:00

o: Relatieve vochtigheid [%]

00:72

22:00

23:00

Klimaatgegevens weerstatid

250

20:00

21:00 Relatieve vochtigheid [96]

200

150

100

50

0